当ReRAM遇上人工智能

2017年12月04日
包括脸书、亚马逊、微软、阿里巴巴、谷歌、腾讯、百度等,都在产生大量的数据,包括人脸、位置、行为习惯、社交照片等。物联网已经到来,而且正在指数级的增长;自动驾驶汽车已经进入市场,云计算已经无处不在。我们刚开始想象如何借助于这些创新来开创一个人工智能的新时代,创建新的商业模式、新的生产率典范和新的大众娱乐方式,这些不仅对人类带来意义深远的影响,而且也为通过数据盈利的创新者带来巨大的财富。

收集与存储这些“大”数据是当务之急。但是,比数据有多“大”更为重要的是,如何驱动下一波的创新。在人工智能竞赛中的胜出者需要做四件事:
1、访问大量的数据;
2、访问正确的数据;
3、把数据变为具有可行动性的洞察力的强大算法;
4、超越竞争对手的速度和规模。

今天,通过训练人工智能算法与创建新的应用,数据有机会成为利润中心。更多的数据训练,就会让人工智能算法更聪明。

应用ReRAM这样新的存储技术,能够发挥人工智能真实的潜能,实现速度、低功耗/高能效、存储容量与可制造性的完美结合。

当目标从简单的代码行的抓取,转变成对从外部传感器获取的大量数据进行实时处理、分析、执行时,大数据到人工智能的根本转变就来临了。从传感器来的数据可以存储在芯片上,直接输送给深度神经网络,以便采取直接的行动。非易失性的存储技术,比如ReRAM存储技术,通过低功耗、快速读取、基于字节寻址的写操作,来帮助应对性能与功耗的挑战。

ReRAM存储技术能够直接集成在芯片内部,产生一个新的以存储为中心的片上系统架构。通过与处理器核集成在同一颗芯片中的片上系统方案,ReRAM充分地加速了深度神经网络算法。ReRAM技术是一个重要的创新,它加速人工智能的潜能,实现多种应用,加速性能,极大地提高能效,实现更高级的安全性,减少芯片的数量和芯片的面积。

高性能计算,比如人工智能,需要在处理器、存储与输入输出之间进行高带宽、低时延的数据访问。ReRAM存储技术通过减少计算与存储之间的性能差距,可显著提升高性能计算应用的性能。


本文关键词:ReRAM 存储芯片

相关文章:CrossbarReRAM可制造性和可扩展性
来源:深圳市英尚微电子有限公司
产品名
价格

在线客服

售前客服

My status 英尚 点击这里给我发消息 英尚

售后客服

在线时间

周一至周五
8:00-17:00

周六至周日
9:00-21:00